Research interests and current research in the Pulay group

Research Interests

Theoretical and computational chemistry, infrared and Raman spectroscopy, molecular geometries and vibrations, magnetic properties of molecules, calculation of NMR chemical shifts, protein structure refinement using NMR chemical shifts, electron correlation, localized orbitals, theoretical treatment of large molecules, density functional theory, molecular dynamics, parallel computing, PC-based computer clusters.

Current research projects

1. Electron correlation techniques for large molecules (Coworkers, in chronological order: S. Saebo, Mississippi State University; K. Wolinski, Lublin University, Poland; Jon Baker, U. of Arkansas; H.-J. Werner, University of Stuttgart, Germany, Alan R. Ford, U. of Arkansas; S. Nagase, and Ishimura, Institute of Molecular Science, Okazaki, Japan; Tomasz Janowski, U. of Arkansas)

172.     A. El-Azhary, G. Rauhut, P. Pulay and H.-J. Werner, Analytical Energy Gradients for Local Second-Order Moller-Plesset Perturbation Theory, J. Chem. Phys., 108, 5185 (1998).

174.     H. J. J. van Dam, J. H. van Lenthe and P. Pulay, The size consistency of multi-reference Moller-Plesset Perturbation Theory, Mol. Phys. 93, 431 (1998).

176.     P.M. Kozlowski and P. Pulay, The Unrestricted Natural Orbital–Restricted Active Space (UNO-RAS) Method: Methodology and Implementation, Theor. Chem. Acct. 100, 12 (1998).

186.     S. Saebo and P. Pulay, A low-scaling method for second-order Moller-Plesset calculations, J. Chem. Phys. 115, 3975 (2001).

187.     P. Pulay, S. Saebo, and K. Wolinski, Efficient calculation of canonical MP2 energies, Chem. Phys. Lett. 344, 543 (2001).

193.     J. Baker and P. Pulay, An efficient parallel algorithm for the calculation of canonical MP2 energies, J. Comput. Chem., 23, 1150 (2002).

203.     K. Wolinski and P. Pulay, Second-Order Mřller-Plesset Calculations with Dual Basis Sets, J. Chem. Phys., 118, 9497-9503 (2003).

211.     S. Saebo, J. Baker, K. Wolinski and P. Pulay, An Efficient Atomic Orbital Based Second-Order Mřller-Plesset Gradient Program, J. Chem. Phys. 120, 11423 (2004).

215.      K. Ishimura, P. Pulay and S. Nagase, A New Parallel Algorithm of MP2 Energy Calculations, J. Comput. Chem., 27, 407-413 (2006).

 

219.      A. R. Ford, T. Janowski, P. Pulay, Array Files for Computational Chemistry: MP2 Energies, J. Comput. Chem. 2007, 28, 1215-1220.

 

220.      T. Janowski, A.R. Ford, P. Pulay, Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files, J. Chem. Theor. Comp. 2007, 3, 1368-77.

 

221.      D. G. Fedorov, K. Ishimura, T. Ishida, K. Kitaura, P. Pulay, S. Nagase, Accuracy of the three-body fragment molecular orbital method applied to Moller-Plesset perturbation theory, J. Comput. Chem. 2007, 28, 1476-1484.

 

222.             K. Ishimura, P. Pulay, S. Nagase, A new parallel algorithm for MP2 energy gradient calculations, J. Comput. Chem. 2007, 28, 2034-2042.

 

225.            T. Janowski, P. Pulay, An efficient parallel implementation of the CCSD external exchange operator and the perturbative triples (T) energy Calculation, J. Chem. Theor. Comp., 2008, 4, 1585-1592.

 

230.            M. Pitonak, T. Janowski, P. Neogrady, P. Pulay, P. Hobza, Convergence of the CCSD(T) Correction Term for the Stacked Complex Methyl-adenine … Methyl-thymine: Comparison with Lower-Cost Alternatives, J. Chem. Theor. Comp., 2009, 5, 1761-66.

 

233.      T. Janowski, A. R. Ford, P. Pulay, Accurate correlated calculation of the intermolecular potential surface in the coronene dimer, Mol. Phys. 2010, 108, 249-257.

 

2. Density functional theory (Coworkers: J. Baker, L. Füsti-Molnár, A. Mitin, G. Magyarfalvi, M. Malagoli, K. Wolinski)

189.     L. Füsti-Molnár and P. Pulay, Accurate Molecular Integrals and Energies Using Combined Plane Wave and Gaussian Basis Sets In Molecular Electronic Structure Theory, J. Chem. Phys., 116, 7795 (2002).

193.     J. Baker and P. Pulay, Assessment of the Handy-Cohen Optimized Exchange Density Functional for Organic Reactions, J. Chem. Phys. 117, 1441 (2002).

 

195.     A. V. Mitin, J. Baker, K. Wolinski and P. Pulay, Parallel Stored Integral and Semi-Direct Hartree-Fock and Density Functional Energies with Data Compression, J. Comput. Chem., 24, 154 (2003).

 

196.     L. Füsti-Molnár and P. Pulay, The Fourier Transform Coulomb Method: Efficient and Accurate Calculation of the Coulomb Operator in a Gaussian Basis, J. Chem. Phys., 117, 7827 (2002).

197.     J. Baker and P. Pulay, Assessment of the OLYP and O3LYP Density Functionals for First-Row Transition Metals, J. Comput. Chem., in press.

198.     V. Mitin, J. Baker and P. Pulay, An Improved 6-31G* Basis Set for First-Row Transition Metals, J. Chem. Phys., 118, 7775-7782 (2003).

 

200.     V. Mitin, J. Baker, K. Wolinski and P. Pulay, Parallel Stored Integral and Semi-Direct Hartree-Fock and Density Functional Energies with Data Compression, J. Comput. Chem., 24, 154 (2003).

 

205.     G. Magyarfalvi and P. Pulay, Assessment of Density Functional Methods for NMR Shielding Calculations, J. Chem. Phys., 119, 1350 (2003).

 

207.     L. Füsti-Molnár and P. Pulay,  Gaussian-based first-principles calculations on large systems using the Fourier Transform Coulomb method.    THEOCHEM    666-667,  25-30 (2003).

 

209.     V. A. Guner, K. S. Khuong, K. N. Houk, A. Chuma, and P. Pulay, Performance of the Handy-Cohen Functionals, OLYP and O3LYP, for the Computation of Hydrocarbon Pericyclic Reaction Activation Barriers, J. Phys. Chem. A, 108, 2959-65 (2004).

 

210.      J. Baker, L. Füsti-Molnár, and P. Pulay,  Parallel Density Functional Theory Energies using the Fourier Transform Coulomb Method, J. Phys. Chem. A. 108, 3040-3047 (2004).

 

212.      S. Saebo, J. Baker, K. Wolinski and P. Pulay, An Efficient Atomic Orbital Based Second-Order Mřller-Plesset Gradient Program, J. Chem. Phys. 120, 11423 (2004).

 

213.      P. Pulay, M. Malagoli and J. Baker, Accuracy and Efficiency of Atomic Basis Set Methods versus Plane Wave Calculations with Ultrasoft Pseudopotentials for DNA Base Molecules, J. Comput. Chem. 26, 599 (2005).

 

219.      J. Baker, K. Wolinski, P. Pulay, Parallel DFT gradients using the Fourier Transform Coulomb method, J. Comput. Chem. 2007, 28, 2581-2588.

 

3. Molecular dynamics and Monte Carlo simulations (Coworkers: B. Paizs, Heidelberg, Germany; G. Fogarasi,  Budapest, Hungary, T. Janoswski, U. of Arkansas, K. Wolinski, Lublin, Poland)

190.          P. Pulay and B. Paizs, Newtonian molecular dynamics in general curvilinear internal coordinates, Chem. Phys. Lett., 353 400 (2002).

208.          P. Pulay and G. Fogarasi, Fock Matrix Dynamics, Chem. Phys. Lett. 386, 272 (2004).

229.     T. Janowski and P. Pulay, Efficient Calculation of the Energy of a Molecule in an Arbitrary Electric Field, Intern. J. Quantum Chem. 2009, 109, 2113-2120 (Hirao volume).

 

4. Calculation of NMR chemical shift, protein structure refinement using NMR shifts, electron paramagnetic resonance:

163.     K. Wolinski, R. Haacke, J.F. Hinton and P. Pulay: Methods for parallel Computation of SCF NMR Chemical Shifts by GIAO Method: Efficient Integral Calculations, Multi-Fock Algorithm and Pseudodiagonalization, J. Comp. Chem., 18, 816 (1997)

178.     P. M. Kozlowski, K. Wolinski, P. Pulay, and B.-H. Ye, X.Y. Li, Nuclear Magnetic Shielding Tensors in Free Base Porphyrin and in Magnesium and Zinc Metalloporphyrins, J. Phys. Chem. A 103, 420 (1999).

184.     B. Wang, J. Baker and P. Pulay, Density Functional Implementation of a Gaussian-weighted Operator for Spin Densities, Phys. Chem. 2, 2131 (2000).

188.     B. Wang, U. Fleischer, J. F. Hinton, and P. Pulay, Accurate prediction of proton chemical shifts: I. Substituted aromatic hydrocarbons, J. Comput. Chem. . 23, 241 (2002).

191.     B. Wang, J. F. Hinton, and P. Pulay, Accurate prediction of proton chemical shifts: II.Peptide analogues, J. Comput. Chem. . 23, 492 (2002).

195.     B. Wang, M. Miskolzie, George Kotovych, and P. Pulay, Backbone Structure Confirmation and Side Chain Conformational Refinement of a Bradykinin Mimic, BKM-824, by Comparing Calculated 1H, 13C and 19F Chemical Shifts with Experiment, J. Biomol. Struct. Dyn. 20, 71 (2002).

202.     Wang, J. F. Hinton and P. Pulay, C-H∙∙∙O Hydrogen Bond Between N-Methyl Maleimide and Dimethyl Sulfoxide: A Combined NMR and ab initio Study,  J. Phys. Chem., 107, 4683 (2003).

 

205.     G. Magyarfalvi and P. Pulay, Assessment of Density Functional Methods for NMR Shielding Calculations, J. Chem. Phys., 119, 1350 (2003).

 

206.     R. E. Koeppe, H. Sun, P. C. A. Van Der Wel, E. Scherer, P. Pulay, and D. V. Greathouse,  Combined Experimental/Theoretical Refinement of Indole Ring Geometry Using Deuterium Magnetic Resonance and ab Initio Calculations.    J. Amer. Chem. Soc. 125, 12268 (2003).

 

214.     P. Pulay, E. M. Scherer, P. C. A. Van Der Wel and R. E. Koeppe , II, Importance of Tensor Asymmetry for the Analysis of 2H NMR Spectra from Deuterated Aromatic Rings, J. Am. Chem. Soc., 127, 17488-17493, (2005).

 

5. Molecular geometry optimization (coworkers: Jon Baker, B. Paizs, German Cancer Research Center, Heidelberg)

See:

162.     J. Baker and P. Pulay: Geometry Optimization of Atomic Microclusters Using Inverse-power Distance Coordinates, J. Chem. Phys., 105, 11100 (1996).

165.     F. Eckert, P. Pulay and H.-J. Werner: Ab initio Geometry Optimization for Large Molecules, J. Comp. Chem., 18, 1473 (1977).

175.     B. Paizs, G. Fogarasi, and P. Pulay, An Efficient Direct Method for Geometry Optimization in Large Molecules in Internal Coordinates, J. Chem. Phys. 109, 6571 (1998).

177.     J. Baker, D. Kinghorn and P. Pulay, Geometry Optimization in Delocalized Internal Coordinates: An Efficient Quadratically Scaling Algorithm for Large Molecules, J. Chem. Phys. 110, 4986-91 (1999).

181.     J. Baker and P. Pulay, Efficient Geometry Optimization of Molecular Clusters, J. Comp. Chem. 21, 69 (2000).

182.     J. Baker and P. Pulay, Optimization and Reaction Path Algorithms, Encyclopedia of Chemical Physics and Physical Chemistry, IOP Publishing, Philadelphia PA, 2000.

183.     B. Paizs, J. Baker, S. Suhai and P. Pulay, Geometry Optimization of Large Biomolecules in Redundant Internal Coordinates, J. Chem. Phys. 113, 6566 (2000).

204.     I. Diaz-Acosta, J. Baker, J. F. Hinton and P. Pulay, Calculated and Experimental Geometries and Infrared Spectra of Metal Tris-Acetylacetonates. Vibrational Spectroscopy as a Probe of Molecular Structure for Ionic Complexes. Part II. Jahn-Teller distorted complexes,  Spectrochim. Acta A, 59, 363 (2003).

206.     R. E. Koeppe, H. Sun, P. C. A. Van Der Wel, E. Scherer, P. Pulay, and D. V. Greathouse,  Combined Experimental/Theoretical Refinement of Indole Ring Geometry Using Deuterium Magnetic Resonance and ab Initio Calculations.    J. Amer. Chem. Soc. 125, 12268 (2003).

223.     T. Janowski, P. Pulay, High accuracy benchmark calculations on the benzene dimer potential energy surface, Chem. Phys. Lett. 2007, 447, 27-32.

227.     J. Martin, J. Baker, and P. Pulay, Comments on the Molecular Geometry of Ferrocene: The Dangers of Using Quantum Chemistry programs as black boxes, J. Comput. Chem., 2009, 30, 881-883.

228.     E. M. Huff and P. Pulay, A Potential Surface for the Interaction between Water, and Coronene as a Model for a Hydrophobic Surface, Mol. Phys. 2009, 107, 1197-1207 (Schaefer volume).

233.     T. Janowski, A. R. Ford, P. Pulay, Accurate correlated calculation of the intermolecular potential surface in the coronene dimer, Mol. Phys. 2010, 108, 249-257.

 

6. Theoretical vibrational (infrared and Raman) spectroscopy:

160.     P. Kozlowski, A. Jarzecki and P. Pulay: Vibrational Assignment and Definite Harmonic Force Field for Porphine. I. Scaled Quantum Mechanical (SQM) Results and Comparison with Empirical Force Fields", J. Phys. Chem., 100, 7007 (1996).

161.     P.M. Kozlowski, A.A. Jarzecki, P. Pulay, X-Y. Li and M.Z. Fgierski: Vibrational Assignment and Definite Harmonic Force Field for Prophyrin. II. Comparison with Non-resonance Raman Data, J. Phys. Chem., 100, 3985 (1996).

167.     A.A. Jarzecki, P.M. Kozlowski, P. Pulay, B.-H. Ye and X.-Y. Li: Scaled Quantum Mechanical and Experimental Vibrational Spectra of Magnesium and Zinc Porphyrins, Spectrochim. Acta, 53, 1195 (1997) (invited article).

168.     U. Fleischer and P. Pulay: The Raman Spectrum of Coronene: A Scaled Quantum Mechanical Force Field Study, J. Raman Spectr. 29 473 (1998).

171.     J. Baker, A. A. Jarzecki, and P. Pulay, Direct Scaling of Primitive Valence Force Constants: An Alternative Approach to Scaled Quantum Mechanical (SQM) Force Fields, J. Phys. Chem. A 102, 1412 (1998).

173.     J. Baker and P. Pulay: Predicting the Vibrational Spectra of Some Simple Fluorocarbons by Direct Scaling of Primitive Valence Force Constants, J. Comp. Chem., 19, 1187 (1998).

179.     P. M. Kozlowski, T. S. Rush III, A. A. Jarzecki, M. Z. Zgierski, B. Chase, C. Piffat, B.-H. Ye, Z.-Y. Li, P. Pulay, and T. G. Spiro, DFT-SQM Force Field for Nickel Porphine: Intrinsic Ruffling, J. Phys. Chem. A 103, 1357 (1999).

185.     I. Diaz-Acosta, J. Baker, W. Cordes and P. Pulay, Calculated and Experimental Geometries and Infrared Spectra of Metal Tris-Acetylacetonates: Vibrational Spectroscopy as a Probe of Molecular Structure for Ionic Complexes. Part I,. J. Phys. Chem. A 105, 238 (2001).

198.     H. V. Brand, R. L. Rabie, D. J. Funk, I. Diaz-Acosta, P. Pulay and T. K. Lippert, Theoretical and Experimental Study of the Vibrational Spectra of the a, b, and d Phases of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX),  J. Phys. Chem. B,  106,  10594-10604 (2002).

204.     I. Diaz-Acosta, J. Baker, J. F. Hinton and P. Pulay, Calculated and Experimental Geometries and Infrared Spectra of Metal Tris-Acetylacetonates. Vibrational Spectroscopy as a Probe of Molecular Structure for Ionic Complexes. Part II. Jahn-Teller Distorted Complexes,  Spectrochim. Acta A, 59, 363 (2003).

217.     J. Baker, P. Pulay, The Interpretation of Compliance Constants and Their Suitability for Characterizing Hydrogen Bonds and Other Weak Interactions, J. Am. Chem. Soc., 128, 11324-11325 (2006).

7. Molecular Reactivity

164.     G. Rauhut, A.A. Jarzecki and P. Pulay: The Molecular Rearrangement of Benzofuroxan, J. Comp. Chem., 18, 489 (1997).

166.     J. Baker, P. M. Kozlowski, A. A. Jarzecki, and P. Pulay, The inner hydrogen migration in free base porphyrin, Theor. Chem. Acc. 97, 59 (1997) (invited paper)

180.     M. L. Shirel and P. Pulay, Stability of Novel Oxo- and Chloro-Substituted Trioxanes, J. Amer. Chem. Soc. 121, 8544 (1999).

209.     V. A. Guner, K. S. Khuong, K. N. Houk, A. Chuma, and P. Pulay, Performance of the Handy-Cohen Functionals, OLYP and O3LYP, for the Computation of Hydrocarbon Pericyclic Reaction Activation Barriers, J. Phys. Chem. A, 108, 2959-65 (2004).

216.     Z. Slanina, P. Pulay, S. Nagase, .H2, Ne, and N2 Energies of Encapsulation into C60 Evaluated with the MPWB1K Functional, J. Chem. Theory Comp. 2, 782-85 (2006).

218.     G. D. Jones, J. L. Martin, C. McFarland, O.R. Allen, R.E. Hall, A.D. Haley, R.J. Brandon, T. Kanovalova, P.J. Desrochers, P. Pulay, D.A. Vicic, Ligand Redox Effects in the Synthesis, Electronic Structure and Reactivity of an Alkyl-Alkyl Cross-Coupling Catalyst, J. Am. Chem. Soc., 128, 13175-13183 (2006).

231.     S. Zhang, J. Baker, P. Pulay, A reliable and efficient first principles-based method for predicting pKa value. 1. Methodology, J. Phys. Chem. A 2010, 114, 425-431.

232.     S. Zhang, J. Baker, P. Pulay, A reliable and efficient first principles-based method for predicting pKa value. 2. Organic Acids, J. Phys. Chem. A 2010, 114, 432-442.